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Abstract { An approach to insulin injection ther-

apy is introduced that draws from recent ideas

in run-to-run control of batch chemical reactors.

The method relies on measurements of blood glu-

cose and does not require a mathematical model.

Results are shown for simulation case studies in-

volving a detailed pharmacokinetic model.
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I. Introduction

Type I diabetes mellitus has received considerable at-
tention in biomedical research, owing to the large fraction
of the population which is a�ected by the disease (current
estimate is 16 million worldwide). The primary manifes-
tation of the disease is large 
uctuations in the patient's
blood glucose level. Short term implications of low glu-
cose levels are quite serious (diabetic coma), and the long-
term implications of varying glucose levels (nephropathy,
retinopathy, and other tissue damage ) have received in-
creasing attention in such forums as the Diabetes Control
and Complications Trial (DCCT) [1], [2].

The approaches to glucose regulation are varied, with
the conventional method consisting of 3-5 daily insulin
injections with quantities of insulin based on 4-8 daily in-
vasive glucose measurements. To date, this form of ther-
apy has been unable to restore metabolism to a healthy
patient state, and wide glucose 
uctuations continue to
occur for many patients. According to the DCCT, blood
glucose should be controlled within the range of 60{120
mg/dl. Research is underway for alternative methods,
including beta cell transplants, insulin pumps, and oral
or nasal delivery means. A survey of some of these ap-
proaches can be found in [3] and [4].

Control theoretic developments have focused primarily
on the insulin pump regimens, with some of the early work
dating back to the BIOSTATORTM algorithm [5]. One
of the early studies considered a hybrid formulation of an
injection combined with continuous delivery [6]. However,
the injection timing and amount were �xed in that anal-
ysis. A key issue in control studies is the source of the
insulin injection, either intravenous or subcutaneous. A
nice review of the two areas is provided in a pair of recent
articles ([3], [4]). Two key issues are the ease with which
insulin can be administered in the respective sites, and the
relatively longer time constant associated with the uptake
of insulin delivered subcutaneously.

Another trend in the diabetes management area is the

increasing availability of glucose measurement informa-
tion for the patient. Recent developments include the
AccuChek system from Roche Diagnostics and the Glu-
coWatch from Cygnus. Although these systems do not
provide a continuous glucose reading, the frequency rates
are approaching several samples per hour, which is an ef-
fective range for a system response that is on the order
of several hours. There is an unprecedented amount of
information available for the patients to use in the cus-
tomization of their insulin therapy.

II. Patient Protocol as a Batch-to-Batch

Control Problem

We propose in this paper a technique for optimizing
a patient's insulin therapy (timing, amount) through the
use of so-called run-to-run control [7]. This technique has
found application in the chemical industry for the opti-
mal operation of batch reactors which undergo repeated
executions of a similar recipe.

The similarities between the diabetic patient protocol
and the batch reactor recipe which motivate the applica-
tion of this technique are:

� the recipe (24-hour cycle) for a human patient con-
sists of a repeated meal protocol (typicall 3 meals)
with some variance on meal type, timing, and dura-
tion,

� there is not an accurate dynamic model available to
describe the detailed glucose response for an individ-
ual to the meal pro�le, and

� there are selected measurements available which
might be used to characterize the \quality" of the
response for a 24-hour day, including maximum and
minimum glucose values.

As noted in the original reference [7], the key elements
of the algorithm are that it is measurement-based (as op-
posed to model-based) and the independent variable of
the control loop is the batch number. Thus, the solu-
tion is implemented as an open-loop policy for each batch
(24-hour cycle), and the feedback allows re�nement over
successive batches (days).

A. Description of the procedure

The basic procedure from [7] is summarized below:

1. Parameterize the input pro�le for batch k, u(t; k), as U(t; �(k))
such that the input parameter vector, �(k), and the controlled
variable vector,  (k), have the same dimension.

2. Choose an initial guess for �(k); k = 1.
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3. Run the batch using the input u(t; k) corresponding to �(k).
Compute  (k) from the measurements, y(t; k).

4. Update the input parameters using �(k+1) = �(k)+K ( r�
 (k)), with K being an appropriate gain matrix and  r the
reference values to be attained. Set k = k+1 and repeat steps
3-4 until convergence.

For the present application, u(t; k) and y(t; k) corre-
spond to the insulin and glucose pro�les, respectively.
Two cases will be considered: a repeated single-meal and
a three-meal 24-hour cycle. The running index k repre-
sents the cycle number, i.e., the meal number in the �rst
case and the day number in the second. The choice of
�(k) and  (k) depends on the case considered and will be
discussed next.

B. Single meal study

The two manipulated variables and the two controlled
variables in this case are as follows:

� Manipulated variables: timing of insulin injection, T ,
and quantity of insulin injection, Q, i.e., �T = [T Q ].

� Controlled variables: maximum value of glucose at-
tained after the meal, Gmax, and minimum value of
glucose attained after the peaking, Gmin, i.e.,  

T =
[Gmax Gmin ]. The maximum and minimum glucose
concentrations are selected as convenient scalar mea-
sures of performance for a particular insulin regime.

Of particular interest in the present context is the fact
that the limited measurement information of the patient's
blood glucose level is translated into quality measure-
ments (max/min glucose). In this way, the patient's sam-
pling protocol does not need to be rigorously synchro-
nized to a particular time every day, and the correspond-
ing quality variables are exactly the type of variables that
a medical professional would use to evaluate the eÆciency
of a particular insulin regimen.
A speci�c attribute of this problem is that any value of

Gmax(k) less than G
r
max is acceptable. So, no correction

needs to be done when (Gr
max �Gmax(k)) is positive. A

similar situation arises with Gmin also, where no correc-
tion is necessary when (Gr

min �Gmin(k)) is negative.
In principle, a multivariable controller should be de-

signed to maintain the two components of  at their
reference values  r. However, the e�ects of the inputs
are relatively decoupled for the case studies considered
(as determined by the relative gain array (RGA)). The
RGA analysis suggests a strategy which pairs the timing
of insulin T with maximum value of glucose Gmax, and
the quantity of insulin Q with minimum value of glucose
Gmin. So, the update laws for the timing and quantity of
insulin injection are given below:

T (k + 1) = T (k) +KT min(0; Grmax �Gmax(k))

Q(k + 1) = Q(k) +KQ max(0; Grmin �Gmin(k))

Note that the controller used is of the integral type.
To improve the rate of convergence, a proportional or a

derivative term could be added, thus resulting in a PI or a
PID controller, for the design of which standard controller
design methodologies can be used.

The important variables that need to be designed are
the initial guesses T (1) and Q(1). In addition to Gr

max

and Gr
min (desirable bounds on glucose), there exist hard

limits �Gmax and �Gmin (absolute bounds that, if violated,
lead to serious medical problems). The values T (1) and
Q(1) should be so chosen that these hard constraints are
satis�ed for all cases. Also, the history of the patient can
help choose initial guesses close enough to the eventual
�nal values.

The gains KT and KQ are the next important param-
eters that have to be computed. Though the coupling
is low, it might so happen that a fast decrease in Gmax

may cause an unacceptable dip in Gmin and vice-versa.
Thus, the gains re
ect a compromise between speed and
accuracy.

C. Extension to 24-hour cycle

The previous study introduced the basic elements of the
algorithm. One rather weak implicit assumption is that
all meals appear similar. That assumption is relaxed here,
where 3 meals are considered over a 24-hour period as the
basic cycle which is repeated.

In a normal day, there are three meals, each of which has
fairly di�erent caloric content. Thus the timing and the
quantity of insulin used need to be di�erent and adapted
to the food habits. Thus, there are 6 manipulated vari-
ables (T and Q for each meal) and 6 controlled variables
(Gmax and Gmin for each meal). This gives rise to a
6� 6 multivariable control problem. However, as before,
there is very strong decoupling between manipulated and
controlled variables. Also, the morning meal and insulin
intake have negligible in
uence on the glucose evolution
during lunch and dinner. The mathematical details of
the control development parallel the previous case, with
the obvious increase in dimension, and are omitted in this
paper. The application of this algorithm to a simulation
patient model is reported in the next section.

III. Simulated Patient Case Study

The case study utilizes a detailed (19th order) com-
partmental model as a virtual patient to demonstrate the
algorithm [9], [10]. The full model consists of 6 compart-
ments to describe the metabolism of glucose and insulin in
the body, with several compartments subdivided into sep-
arate tissue and capillary subspaces. The model is used
to relate a disturbance (meal ingestion) and manipulated
input (intravenous insulin injection) to the key output
(blood glucose). For the control algorithm, the manipu-
lated input is characterized by the size and timing of the
injection, and the output is characterized by the maxi-
mum and minimum values over a specifed time window.



The particular parameter values and operating conditions
employed in this simulation are detailed in [10].

A. Single meal study

As discussed earlier, the RGA calculated between the
manipulated inputs (insulin timing/amount) and outputs
(max/min glucose) is nearly diagonal:

RGASorensen =

�
1:0126 �0:0126
�0:0126 1:0126

�

The reference values were 122 mg/dl for maximum glu-
cose and 83:5 mg/dl for the minimum glucose (nominal
patient has a basal glucose value of 87 mg/dl). The hard
constraints that were imposed on the glucose range were
207 and 72, respectively.
The results of this case study are summarized in Fig-

ures 1 through 2. A 12 hour cycle is considered to moni-
tor a single repeated 100 g meal with a 5 per cent relative
standard deviation. The �rst 2 �gures depict the �nal
(desired) insulin pro�le determined after 20 meals and
the resulting glucose pro�le, respectively. The progres-
sive improvement is depicted in the next 2 �gures which
show the maximum and minimum glucose values, respec-
tively. It can be seen that the \desired" maximum glu-
cose is achieved after several meals, while the \desired"
minimum glucose level is achieved rather quickly. The

uctuations which appear in the pro�les are the result of
the random signal employed for the actual meal size.
With regard to an actual patient trial, these results sug-

gest that a relatively short trial period could be employed
(2-3 days) after which the patient's new regimen could be
established. In this manner, the proposed approach could
be used either in a continuous fashion for constant �ne-
tuning, or on a periodic basis to allow \re-calibration".
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Fig. 1. Insulin injection pro�le calculated for a single meal

B. Extension to 24-hour cycle

The same simulation model was utilized in the more
practical setting of a 3-meal (batch) cycle. A 15 hour cycle
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Fig. 2. Blood glucose pro�le calculated for a single meal
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Fig. 3. Maximum glucose level versus iteration for a single meal
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Fig. 4. Minimum glucose level versus iteration for a single meal



is considered to monitor a repeated sequence of 40, 80, and
140 g meals (breakfast, lunch, dinner) with a 5 per cent
relative standard deviation. The relative gain array sup-
ports a decentralized strategy which pairs insulin dosage
and timing with the corresponding minimum/maximum
of the corresponding meal response. For the purposes of
this study, the controller gains are the same for each meal
{ hence there are only two \tuning" knobs for this con-
troller.
The results are summarized in Figures 5 and 6. The

�nal insulin pro�le after 10 cycles (days) is depicted in
Figure 5. The corresponding glucose pro�le is shown in
Figure 6. It can be seen that the hypoglycemic excursions
are quite small, and the hyperglycemic excursions are in
an acceptable range.
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Fig. 5. Insulin injection pro�le calculated for a three meal response
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Fig. 6. Blood glucose pro�le calculated for a three meal response

IV. Conclusions and Extensions

An approach to insulin injection therapy for a diabetic
patient is presented. The idea draws inspiration from
batch-to-batch control strategies in the chemical process
industry, and has been extended to the drug delivery con-
text in this paper. The results show promise for both

single meal and single day (3 meal) cycles. The conver-
gence to an insulin pro�le is typically accomplished in
5-10 cycles. Two of the particularly attractive features of
the approach are: (i) there is no requirement for a mathe-
matical model, and (ii) the measurement requirements are
fairly modest (no high frequency, real-time measurements
needed). The variables chosen for \quality" re
ect the
key medical attributes of the patient response (maximum
and minimum glucose response).
The results could be generalized to a wide variety of

drug delivery problems that contain some repetitive cycle
of response to either a cyclic disturbance or a cyclic refer-
ence. The robustness of the approach to variations in the
cycle (for example, meal timing and amount) is currently
under investigation. An additional point for further in-
vestigation is the incorporation of a detailed description
for subcutaneous transport of insulin in the patient model
to more accurately re
ect a standard insulin injection re-
sponse.
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